DocumentCode :
1423005
Title :
Autonomous Virulence Adaptation Improves Coevolutionary Optimization
Author :
Cartlidge, John ; Ait-Boudaoud, Djamel
Author_Institution :
Sch. of Comput., Eng. & Phys. Sci., Univ. of Central Lancashire, Preston, UK
Volume :
15
Issue :
2
fYear :
2011
fDate :
4/1/2011 12:00:00 AM
Firstpage :
215
Lastpage :
229
Abstract :
A novel approach for the autonomous virulence adaptation (AVA) of competing populations in a coevolutionary optimization framework is presented. Previous work has demonstrated that setting an appropriate virulence, v, of populations accelerates coevolutionary optimization by avoiding detrimental periods of disengagement. However, since the likelihood of disengagement varies both between systems and over time, choosing the ideal value of v is problematic. The AVA technique presented here uses a machine learning approach to continuously tune v as system engagement varies. In a simple, abstract domain, AVA is shown to successfully adapt to the most productive values of v. Further experiments, in more complex domains of sorting networks and maze navigation, demonstrate AVA´s efficiency over reduced virulence and the layered Pareto coevolutionary archive.
Keywords :
Pareto optimisation; evolutionary computation; learning (artificial intelligence); AVA technique; autonomous virulence adaptation; coevolutionary optimization; complex domains; layered Pareto coevolutionary archive; machine learning approach; maze navigation; productive values; reduced virulence; Autonomous virulence adaptation; coevolution; disengagement; genetic algorithms; machine learning; maze navigation; optimization methods; reduced virulence; sorting networks;
fLanguage :
English
Journal_Title :
Evolutionary Computation, IEEE Transactions on
Publisher :
ieee
ISSN :
1089-778X
Type :
jour
DOI :
10.1109/TEVC.2010.2073471
Filename :
5685267
Link To Document :
بازگشت