DocumentCode :
1424192
Title :
Optimal Sensor Power Scheduling for State Estimation of Gauss–Markov Systems Over a Packet-Dropping Network
Author :
Shi, Ling ; Xie, Lihua
Author_Institution :
Electron. & Comput. Eng., Hong Kong Univ. of Sci. & Technol., Kowloon, China
Volume :
60
Issue :
5
fYear :
2012
fDate :
5/1/2012 12:00:00 AM
Firstpage :
2701
Lastpage :
2705
Abstract :
We consider sensor power scheduling for estimating the state of a general high-order Gauss-Markov system. A sensor decides whether to use a high or low transmission power to communicate its local state estimate or raw measurement data with a remote estimator over a packet-dropping network. We construct the optimal sensor power schedule which minimizes the expected terminal estimation error covariance at the remote estimator under the constraint that the high transmission power can only be used m <; T + 1 times, given the time-horizon from k = 0 to k = T. We also discuss how to extend the result to cases involving multiple power levels scheduling. Simulation examples are the provided to demonstrate the results.
Keywords :
Gaussian processes; Kalman filters; Markov processes; scheduling; sensor fusion; state estimation; Gauss-Markov systems; Kalman filter; high transmission power; high-order Gauss-Markov system; local state estimate; multisensor; optimal sensor power schedule; optimal sensor power scheduling; packet-dropping network; raw measurement; state estimation; transmission power; Kalman filters; Optimal scheduling; Power measurement; Processor scheduling; Schedules; Scheduling; State estimation; Kalman filter; packet-dropping networks; power scheduling; remote state estimation;
fLanguage :
English
Journal_Title :
Signal Processing, IEEE Transactions on
Publisher :
ieee
ISSN :
1053-587X
Type :
jour
DOI :
10.1109/TSP.2012.2184536
Filename :
6132434
Link To Document :
بازگشت