Title :
A Barankin-type lower bound on the estimation error of a hybrid parameter vector
Author :
Reuven, Ilan ; Messer, Hagit
Author_Institution :
Dept. of Electr. Eng.-Syst., Tel Aviv Univ., Israel
fDate :
5/1/1997 12:00:00 AM
Abstract :
The Barankin (1949) bound is a realizable lower bound on the mean-square error (MSE) of any unbiased estimator of a (nonrandom) parameter vector. We present a Barankin-type bound which is useful in problems where there is a prior knowledge on some of the parameters to be estimated. That is, the parameter vector is a hybrid vector in the sense that some of its entries are deterministic while other are random variables. We present a simple expression for a positive-definite matrix which provides bounds on the covariance of any unbiased estimator of the nonrandom parameters and an estimator of the random parameters, simultaneously. We show that the Barankin bound for deterministic parameters estimation and the Bobrovsky-Zakai (1976) bound for random parameters estimation are special cases of our proposed bound
Keywords :
covariance matrices; error analysis; information theory; parameter estimation; radar signal processing; random processes; Barankin type lower bound; Bobrovsky-Zakai bound; Cramer-Rao lower bound; Fisher information matrix; MSE; covariance; deterministic parameters estimation; deterministic variables; estimation error; hybrid parameter vector; hybrid vector; information theory; mean-square error; nonrandom parameter vector; nonrandom parameters; parameter vector; positive-definite matrix; radar signal; random parameters estimation; random variables; realizable lower bound; unbiased estimator; Covariance matrix; Entropy; Estimation error; Information theory; Morphology; Parameter estimation; Random variables; Robustness; Statistics; Testing;
Journal_Title :
Information Theory, IEEE Transactions on