DocumentCode :
1425271
Title :
Modified Kolmogorov´s Neural Network in the Identification of Hammerstein and Wiener Systems
Author :
Michalkiewicz, J.
Author_Institution :
Dept. of Electron. & Comput. Eng., Koszalin Tech. Univ., Koszalin, Poland
Volume :
23
Issue :
4
fYear :
2012
fDate :
4/1/2012 12:00:00 AM
Firstpage :
657
Lastpage :
662
Abstract :
This brief deals with the possibilities of using the modified Kolmogorov´s neural network for the identification of non-linear dynamic systems, among them the Wiener and Hammerstein systems. The algorithm of training the network is simple, well convergent and with a small error of approximation. The modified neural network is characterized by a simple computer algorithm; it also omits complicated techniques of back propagation. The simulation results are shown to illustrate the modified Kolmogorov theorem.
Keywords :
backpropagation; identification; neural nets; Hammerstein-Wiener system identification; Kolmogorov neural network; Kolmogorov theorem; back propagation; computer algorithm; nonlinear dynamic system identification; Approximation algorithms; Approximation methods; Heuristic algorithms; Indexes; Learning systems; Polynomials; Training; Hammerstein and Wiener systems; identification; neural network;
fLanguage :
English
Journal_Title :
Neural Networks and Learning Systems, IEEE Transactions on
Publisher :
ieee
ISSN :
2162-237X
Type :
jour
DOI :
10.1109/TNNLS.2011.2178322
Filename :
6133336
Link To Document :
بازگشت