DocumentCode :
1425702
Title :
Quantum-mechanical modeling of electron tunneling current from the inversion layer of ultra-thin-oxide nMOSFET´s
Author :
Lo, S.H. ; Buchanan, D.A. ; Taur, Y. ; Wang, W.
Author_Institution :
IBM Thomas J. Watson Res. Center, Yorktown Heights, NY, USA
Volume :
18
Issue :
5
fYear :
1997
fDate :
5/1/1997 12:00:00 AM
Firstpage :
209
Lastpage :
211
Abstract :
Quantum-mechanical modeling of electron tunneling current from the quantized inversion layer of ultra-thin-oxide (<40 /spl Aring/) nMOSFET´s is presented, together with experimental verification. An accurate determination of the physical oxide thickness is achieved by fitting experimentally measured capacitance-versus-voltage curves to quantum-mechanically simulated capacitance-versus-voltage results. The lifetimes of quasibound states and the direct tunneling current are calculated using a transverse-resonant method. These results are used to project an oxide scaling limit of 20 /spl Aring/ before the chip standby power becomes excessive due to tunneling currents,.
Keywords :
MOSFET; capacitance; dielectric thin films; inversion layers; leakage currents; semiconductor device models; tunnelling; 20 to 40 A; capacitance-versus-voltage curves; direct tunneling current; electron tunneling current; n-channel MOSFET; oxide scaling limit projection; oxide thickness; quantized inversion layer; quantum-mechanical modeling; quantum-mechanically simulated C/V results; quasibound states lifetime; transverse-resonant method; ultra-thin-oxide nMOSFET; CMOS technology; Capacitance; Electromagnetic waveguides; Electrons; Equations; Leakage current; MOSFET circuits; Potential well; Surface treatment; Tunneling;
fLanguage :
English
Journal_Title :
Electron Device Letters, IEEE
Publisher :
ieee
ISSN :
0741-3106
Type :
jour
DOI :
10.1109/55.568766
Filename :
568766
Link To Document :
بازگشت