DocumentCode :
1425989
Title :
Scalable Lookahead Regular Expression Detection System for Deep Packet Inspection
Author :
Bando, Masanori ; Artan, N. Sertac ; Chao, H. Jonathan
Author_Institution :
Dept. of Electr. & Comput. Eng., Polytech. Inst. of New York Univ., Brooklyn, NY, USA
Volume :
20
Issue :
3
fYear :
2012
fDate :
6/1/2012 12:00:00 AM
Firstpage :
699
Lastpage :
714
Abstract :
Regular expressions (RegExes) are widely used, yet their inherent complexity often limits the total number of RegExes that can be detected using a single chip for a reasonable throughput. This limit on the number of RegExes impairs the scalability of today´s RegEx detection systems. The scalability of existing schemes is generally limited by the traditional detection paradigm based on per-character-state processing and state transition detection. The main focus of existing schemes is on optimizing the number of states and the required transitions, but not on optimizing the suboptimal character-based detection method. Furthermore, the potential benefits of allowing out-of-sequence detection, instead of detecting components of a RegEx in the order of appearance, have not been explored. Lastly, the existing schemes do not provide ways to adapt to the evolving RegExes. In this paper, we propose Lookahead Finite Automata (LaFA) to perform scalable RegEx detection. LaFA requires less memory due to these three contributions: 1) providing specialized and optimized detection modules to increase resource utilization; 2) systematically reordering the RegEx detection sequence to reduce the number of concurrent operations; 3) sharing states among automata for different RegExes to reduce resource requirements. Here, we demonstrate that LaFA requires an order of magnitude less memory compared to today´s state-of-the-art RegEx detection systems. Using LaFA, a single-commodity field programmable gate array (FPGA) chip can accommodate up to 25  000 (25 k) RegExes. Based on the throughput of our LaFA prototype on FPGA, we estimate that a 34-Gb/s throughput can be achieved.
Keywords :
computer network security; field programmable gate arrays; finite automata; inspection; FPGA chip; LaFA; RegEx detection systems; bit rate 34 Gbit/s; deep packet inspection; lookahead finite automata; network intrusion detection; per-character-state processing; scalable lookahead regular expression detection system; single-commodity field programmable gate array; state transition detection; suboptimal character-based detection method; Automata; Complexity theory; Correlation; Data structures; Doped fiber amplifiers; Memory management; Timing; DPI; Deep packet inspection; LaFA; Lookahead Finite Automata; NIDPS; network intrusion detection and prevention system; regular expressions;
fLanguage :
English
Journal_Title :
Networking, IEEE/ACM Transactions on
Publisher :
ieee
ISSN :
1063-6692
Type :
jour
DOI :
10.1109/TNET.2011.2181411
Filename :
6134694
Link To Document :
بازگشت