• DocumentCode
    1426257
  • Title

    Robust mean-shift tracking with corrected background-weighted histogram

  • Author

    Ning, Jicai ; Zhang, Leiqi ; Zhang, Dejing ; Wu, Chunlin

  • Author_Institution
    State Key Lab. of Integrated Service Networks, Xidian Univ., Xi´an, China
  • Volume
    6
  • Issue
    1
  • fYear
    2012
  • fDate
    1/1/2012 12:00:00 AM
  • Firstpage
    62
  • Lastpage
    69
  • Abstract
    The background-weighted histogram (BWH) algorithm proposed by Comaniciu et al. attempts to reduce the interference of background in target localisation in mean-shift tracking. However, the authors prove that the weights assigned to pixels in the target candidate region by BWH are proportional to those without background information, that is, BWH does not introduce any new information because the mean-shift iteration formula is invariant to the scale transformation of weights. Then a corrected BWH (CBWH) formula is proposed by transforming only the target model but not the target candidate model. The CBWH scheme can effectively reduce background´s interference in target localisation. The experimental results show that CBWH can lead to faster convergence and more accurate localisation than the usual target representation in mean-shift tracking. Even if the target is not well initialised, the proposed algorithm can still robustly track the object, which is hard to achieve by the conventional target representation.
  • Keywords
    iterative methods; object tracking; background-weighted histogram algorithm; mean-shift iteration; mean-shift tracking; target localisation;
  • fLanguage
    English
  • Journal_Title
    Computer Vision, IET
  • Publisher
    iet
  • ISSN
    1751-9632
  • Type

    jour

  • DOI
    10.1049/iet-cvi.2009.0075
  • Filename
    6135449