DocumentCode :
1428553
Title :
Comparison of two different PNN training approaches for satellite cloud data classification
Author :
Tian, Bin ; Azimi-Sadjadi, Mahmood R.
Author_Institution :
Dept. of Electr. & Comput. Eng., Colorado State Univ., Fort Collins, CO, USA
Volume :
12
Issue :
1
fYear :
2001
fDate :
1/1/2001 12:00:00 AM
Firstpage :
164
Lastpage :
168
Abstract :
Presents a training algorithm for probabilistic neural networks (PNN) using the minimum classification error (MCE) criterion. A comparison is made between the MCE training scheme and the widely used maximum likelihood (ML) learning on a cloud classification problem using satellite imagery data
Keywords :
clouds; learning (artificial intelligence); maximum likelihood estimation; minimisation; neural nets; pattern classification; probability; remote sensing; MCE criterion; MCE training scheme; ML learning; PNN training approaches; maximum likelihood learning; minimum classification error criterion; probabilistic neural networks; satellite cloud data classification; satellite imagery data; Atmospheric modeling; Clouds; Maximum likelihood estimation; Neural networks; Neurons; Pattern recognition; Probability density function; Robustness; Satellites; Training data;
fLanguage :
English
Journal_Title :
Neural Networks, IEEE Transactions on
Publisher :
ieee
ISSN :
1045-9227
Type :
jour
DOI :
10.1109/72.896807
Filename :
896807
Link To Document :
بازگشت