Title :
An estimator for equivalent properties of a bundle of conductors using the inverse problem method
Author :
Trichet, D. ; Fouladgar, J. ; Develey, G.
Author_Institution :
LRTI, St.-Nazaire, France
fDate :
9/1/1998 12:00:00 AM
Abstract :
In this paper, a method is introduced to calculate the equivalent electromagnetic and thermal properties of nonhomogeneous materials. The study is in large part applied to a bundle of conductors. For a filling rate, the conductors are distributed inside a cylindrical geometry using a Monte-Carlo random algorithm. Electromagnetic and thermal equations are solved in this nonhomogeneous material and the total power, magnetic field and temperature distribution are calculated. Supposing an equivalent homogeneous cylinder, the inverse problem methodology is used to calculate the electromagnetic and thermal properties of the equivalent material which give the same power, mean magnetic field or mean temperature distribution. The validity of these hypotheses are then discussed
Keywords :
Monte Carlo methods; conductors (electric); induction heating; inverse problems; magnetic fields; temperature distribution; Monte-Carlo random algorithm; conductor bundle; cylindrical geometry; equivalent homogeneous cylinder; equivalent properties; inverse problem method; mean magnetic field; mean temperature distribution; total power; Conducting materials; Conductors; Electromagnetic fields; Equations; Filling; Geometry; Inverse problems; Magnetic fields; Magnetic materials; Temperature distribution;
Journal_Title :
Magnetics, IEEE Transactions on