Title : 
Application of multi-output support vector regression in remore sensing inversions
         
        
            Author : 
Jingjing Pan ; Hua Yang ; Peipei Xu ; Shaoyuan Chen
         
        
            Author_Institution : 
State Key Lab. of Remote Sensing Sci., Beijing Normal Univ., Beijing, China
         
        
        
        
        
        
            Abstract : 
This paper extends the standard support vector regression (SVR) into multi-dimensional case to estimate different biophysical parameters simultaneously. The improvement is made by the Vapnik loss function of L2 form. The proposed multi-output SVR (MO-SVR) is implemented in the joint inversion of Leaf Area Index (LAI) and vegetation cover fraction (fCover) over SPOT2/HRV1 data in the Fundulea site (VALERI), Romania. Comparison between standard SVR and MO-SVR, and the validation using biophysical maps both indicate the better fitness and accuracy of MO-SVR than the traditional form.
         
        
            Keywords : 
geophysical techniques; remote sensing; vegetation; Fundulea site; Romania; SPOT2-HRV1 data; VALERI; Vapnik loss function; biophysical maps; biophysical parameters; leaf area index; multioutput support vector regression application; remote sensing inversions; vegetation cover fraction; Estimation; Indexes; Neural networks; Reflectivity; Remote sensing; Standards; Support vector machines; MO-SVR; inversion; remote sensing;
         
        
        
        
            Conference_Titel : 
Geoscience and Remote Sensing Symposium (IGARSS), 2014 IEEE International
         
        
            Conference_Location : 
Quebec City, QC
         
        
        
            DOI : 
10.1109/IGARSS.2014.6946863