DocumentCode :
1435341
Title :
Area efficient implementations of fixed-template CNN´s
Author :
Anguita, Mancia ; Pelayo, Francisco J. ; Rojas, Ignacio ; Prieto, Alberto
Author_Institution :
Dept. de Electron. y Tecnologia de Computadores, Granada Univ., Spain
Volume :
45
Issue :
9
fYear :
1998
fDate :
9/1/1998 12:00:00 AM
Firstpage :
968
Lastpage :
973
Abstract :
Implementations of fixed-template Cellular Neural Networks (CNN´s) with reduced circuit complexity are presented. Considerable improvements in area without performance degradation have been obtained by: (1) using single-polarity signals that reduce the number of transistors required for signal replication and to generate the pseudo-linear output function; (2) using simple current-mode circuits to implement the output pseudo-linear function; and (3) searching for network parameter configurations that solve a particular application using the proposed circuit implementation with less hardware complexity. Experimental results for a CCD-CNN chip prototype with a density of 230 cells per millimetersquared (mm2) are also reported
Keywords :
CMOS analogue integrated circuits; analogue processing circuits; cellular neural nets; neural chips; CCD-CNN chip prototype; area efficient implementations; cellular neural networks; circuit complexity reduction; component connected device; current-mode circuits; fixed-template CNN; network parameter configurations; pseudo-linear output function; single-polarity signals; Cellular neural networks; Complexity theory; Current mode circuits; Degradation; Equations; Hardware; Image processing; Integrated circuit interconnections; Prototypes; Signal generators;
fLanguage :
English
Journal_Title :
Circuits and Systems I: Fundamental Theory and Applications, IEEE Transactions on
Publisher :
ieee
ISSN :
1057-7122
Type :
jour
DOI :
10.1109/81.721262
Filename :
721262
Link To Document :
بازگشت