DocumentCode :
1441099
Title :
Structural stability of least squares prediction methods
Author :
Idier, Jérôme ; Giovannelli, Jean-François
Author_Institution :
Lab. des Signaux et Syst., Supelec, Gif-sur-Yvette, France
Volume :
46
Issue :
11
fYear :
1998
fDate :
11/1/1998 12:00:00 AM
Firstpage :
3109
Lastpage :
3111
Abstract :
A structural stability condition is sought for least squares linear prediction methods in the given data case. Save the Toeplitz case, the structure of the normal equation matrix yields no acknowledged guarantee of stability. Here, a new sufficient condition is provided, and several least squares prediction methods are shown to be structurally stable
Keywords :
filtering theory; least squares approximations; matrix algebra; prediction theory; stability; Toeplitz matrix; displacement matrix; least squares linear prediction methods; linear prediction filters; normal equation matrix; positive semidefinite matrix; structural stability condition; sufficient condition; Autocorrelation; Equations; Filters; Least squares methods; Prediction methods; Robustness; Stability; Statistical distributions; Structural engineering; Sufficient conditions;
fLanguage :
English
Journal_Title :
Signal Processing, IEEE Transactions on
Publisher :
ieee
ISSN :
1053-587X
Type :
jour
DOI :
10.1109/78.726826
Filename :
726826
Link To Document :
بازگشت