DocumentCode :
1441293
Title :
Evolutionary search for low autocorrelated binary sequences
Author :
Militzer, Burkhard ; Zamparelli, Michele ; Beule, Dieter
Author_Institution :
Dept. of Phys., Illinois Univ., Urbana, IL, USA
Volume :
2
Issue :
1
fYear :
1998
fDate :
4/1/1998 12:00:00 AM
Firstpage :
34
Lastpage :
39
Abstract :
The search for low autocorrelated binary sequences is a classical example of a discrete frustrated optimization problem. We demonstrate the efficiency of a class of evolutionary algorithms to tackle the problem. A suitable mutation operator using a preselection scheme is constructed, and the optimal parameters of the strategy are determined
Keywords :
binary sequences; genetic algorithms; search problems; discrete frustrated optimization problem; evolutionary algorithms; evolutionary search; low autocorrelated binary sequences; mutation operator; preselection scheme; Autocorrelation; Binary sequences; Evolutionary computation; Genetic mutations; Helium; Land surface temperature; Needles; Radar applications; Stationary state; Traveling salesman problems;
fLanguage :
English
Journal_Title :
Evolutionary Computation, IEEE Transactions on
Publisher :
ieee
ISSN :
1089-778X
Type :
jour
DOI :
10.1109/4235.728212
Filename :
728212
Link To Document :
بازگشت