Title :
Nonlinear blind equalization schemes using complex-valued multilayer feedforward neural networks
Author :
You, Cheolwoo ; Hong, Daesik
Author_Institution :
Dept. of Electron. Eng., Yonsei Univ., Seoul, South Korea
fDate :
11/1/1998 12:00:00 AM
Abstract :
Among the useful blind equalization algorithms, stochastic-gradient iterative equalization schemes are based on minimizing a nonconvex and nonlinear cost function. However, as they use a linear FIR filter with a convex decision region, their residual estimation error is high. In the paper, four nonlinear blind equalization schemes that employ a complex-valued multilayer perceptron instead of the linear filter are proposed and their learning algorithms are derived. After the important properties that a suitable complex-valued activation function must possess are discussed, a new complex-valued activation function is developed for the proposed schemes to deal with QAM signals of any constellation sizes. It has been further proven that by the nonlinear transformation of the proposed function, the correlation coefficient between the real and imaginary parts of input data decreases when they are jointly Gaussian random variables. Last, the effectiveness of the proposed schemes is verified in terms of initial convergence speed and MSE in the steady state. In particular, even without carrier phase tracking procedure, the proposed schemes correct an arbitrary phase rotation caused by channel distortion
Keywords :
Gaussian processes; blind equalisers; feedforward neural nets; multilayer perceptrons; quadrature amplitude modulation; transfer functions; Gaussian random variables; QAM signals; complex-valued activation function; complex-valued multilayer feedforward neural networks; complex-valued multilayer perceptron; correlation coefficient; nonlinear blind equalization schemes; Blind equalizers; Constellation diagram; Cost function; Estimation error; Finite impulse response filter; Iterative algorithms; Multilayer perceptrons; Nonlinear filters; Quadrature amplitude modulation; Random variables;
Journal_Title :
Neural Networks, IEEE Transactions on