Title :
Hybrid Parallelism for Volume Rendering on Large-, Multi-, and Many-Core Systems
Author :
Howison, M. ; Bethel, E. Wes ; Childs, H.
Author_Institution :
Center for Comput. & Visualization, Brown Univ., Providence, RI, USA
Abstract :
With the computing industry trending toward multi- and many-core processors, we study how a standard visualization algorithm, raycasting volume rendering, can benefit from a hybrid parallelism approach. Hybrid parallelism provides the best of both worlds: using distributed-memory parallelism across a large numbers of nodes increases available FLOPs and memory, while exploiting shared-memory parallelism among the cores within each node ensures that each node performs its portion of the larger calculation as efficiently as possible. We demonstrate results from weak and strong scaling studies, at levels of concurrency ranging up to 216,000, and with data sets as large as 12.2 trillion cells. The greatest benefit from hybrid parallelism lies in the communication portion of the algorithm, the dominant cost at higher levels of concurrency. We show that reducing the number of participants with a hybrid approach significantly improves performance.
Keywords :
data visualisation; distributed shared memory systems; multiprocessing systems; parallel processing; rendering (computer graphics); FLOPs; communication portion; distributed-memory parallelism; hybrid parallelism approach; many-core processors; multicore processors; raycasting volume rendering; shared-memory parallelism; standard visualization algorithm; Concurrent computing; Graphics processing unit; Instruction sets; Parallel processing; Rendering (computer graphics); Volume visualization; parallel processing.;
Journal_Title :
Visualization and Computer Graphics, IEEE Transactions on
DOI :
10.1109/TVCG.2011.24