DocumentCode :
1442943
Title :
Latent Fingerprint Matching
Author :
Jain, Anil K. ; Feng, Jianjiang
Author_Institution :
Dept. of Comput. Sci. & Eng., Michigan State Univ., East Lansing, MI, USA
Volume :
33
Issue :
1
fYear :
2011
Firstpage :
88
Lastpage :
100
Abstract :
Latent fingerprint identification is of critical importance to law enforcement agencies in identifying suspects: Latent fingerprints are inadvertent impressions left by fingers on surfaces of objects. While tremendous progress has been made in plain and rolled fingerprint matching, latent fingerprint matching continues to be a difficult problem. Poor quality of ridge impressions, small finger area, and large nonlinear distortion are the main difficulties in latent fingerprint matching compared to plain or rolled fingerprint matching. We propose a system for matching latent fingerprints found at crime scenes to rolled fingerprints enrolled in law enforcement databases. In addition to minutiae, we also use extended features, including singularity, ridge quality map, ridge flow map, ridge wavelength map, and skeleton. We tested our system by matching 258 latents in the NIST SD27 database against a background database of 29,257 rolled fingerprints obtained by combining the NIST SD4, SD14, and SD27 databases. The minutiae-based baseline rank-1 identification rate of 34.9 percent was improved to 74 percent when extended features were used. In order to evaluate the relative importance of each extended feature, these features were incrementally used in the order of their cost in marking by latent experts. The experimental results indicate that singularity, ridge quality map, and ridge flow map are the most effective features in improving the matching accuracy.
Keywords :
fingerprint identification; image matching; visual databases; NIST SD27 database; large nonlinear distortion; latent fingerprint identification; latent fingerprint matching; law enforcement databases; ridge flow map; ridge impressions; ridge quality map; ridge wavelength map; rolled fingerprint matching; small finger area; Costs; Fingerprint recognition; Fingers; Forensics; Law enforcement; NIST; Nonlinear distortion; Skeleton; Spatial databases; System testing; Fingerprint; descriptor; extended features.; forensics; latent; matching; minutiae; Algorithms; Biometry; Databases, Factual; Dermatoglyphics; Fingers; Humans; Image Processing, Computer-Assisted; Pattern Recognition, Automated; Sensitivity and Specificity;
fLanguage :
English
Journal_Title :
Pattern Analysis and Machine Intelligence, IEEE Transactions on
Publisher :
ieee
ISSN :
0162-8828
Type :
jour
DOI :
10.1109/TPAMI.2010.59
Filename :
5432204
Link To Document :
بازگشت