DocumentCode :
1443346
Title :
On the optimal Markov chain of IS simulation
Author :
Nakagawa, Kenji
Author_Institution :
Nagaoka Univ. of Technol., Niigata, Japan
Volume :
47
Issue :
1
fYear :
2001
fDate :
1/1/2001 12:00:00 AM
Firstpage :
442
Lastpage :
446
Abstract :
We investigate the importance sampling (IS) simulation for the sample average of an output sequence from an irreducible Markov chain. The optimal Markov chain used in simulation is known to be a twisted Markov chain, however, the previous proofs are very complicated and do not give us a good perspective. We give a simple and natural proof for the optimality of the simulation Markov chain in terms of the Kullback-Leibler (KL) divergence of Markov chains. The performance degradation of the IS simulation by using a not optimal simulation Markov chain, i.e., the difference between the obtained variance and the minimum variance is shown to be represented by the KL divergence. Moreover, we show a geometric relationship between a simulation Markov chain and the optimal one
Keywords :
Markov processes; differential geometry; importance sampling; information theory; simulation; Kullback-Leibler divergence; geometric relationship; importance sampling simulation; irreducible Markov chain; minimum variance; optimal Markov chain; optimality; twisted Markov chain; Communication networks; Degradation; Discrete event simulation; Error analysis; Information geometry; Monte Carlo methods; Probability distribution; Sampling methods; Solid modeling; Yield estimation;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/18.904558
Filename :
904558
Link To Document :
بازگشت