Title :
Propagation Pattern Analysis During Atrial Fibrillation Based on Sparse Modeling
Author :
Richter, Ulrike ; Faes, Luca ; Ravelli, Flavia ; Sörnmo, Leif
Author_Institution :
Dept. of Electr. & Inf. Technol., Lund Univ., Lund, Sweden
fDate :
5/1/2012 12:00:00 AM
Abstract :
In this study, sparse modeling is introduced for the estimation of propagation patterns in intracardiac atrial fibrillation (AF) signals. The estimation is based on the partial directed coherence function, derived from fitting a multivariate autoregressive model to the observed signal using least-squares (LS) estimation. The propagation pattern analysis incorporates prior information on sparse coupling as well as the distance between the recording sites. Two optimization methods are employed for estimation of the model parameters, namely, the adaptive group least absolute selection and shrinkage operator (aLASSO), and a novel method named the distance-adaptive group LASSO (dLASSO). Using simulated data, both optimization methods were superior to LS estimation with respect to detection and estimation performance. The normalized error between the true and estimated model parameters dropped from 0.20± 0.04 for LS estimation to 0.03 ± 0.01 for both aLASSO and dLASSO when the number of available data samples exceeded the number of model parameters by a factor of 5. For shorter data segments, the error reduction was more pronounced and information on the distance gained in importance. Propagation pattern analysis was also studied on intracardiac AF data, the results showing that the identification of propagation patterns is substantially simplified by the sparsity assumption.
Keywords :
autoregressive processes; bioelectric phenomena; cardiology; least squares approximations; medical signal detection; medical signal processing; optimisation; shrinkage; adaptive group least absolute selection; data segments; distance-adaptive group; electrophysiology; intracardiac atrial fibrillation signals; least-squares estimation; multivariate autoregressive model; normalized error; optimization; partial directed coherence function; propagation pattern analysis; shrinkage operator; signal processing; sparse modeling; Adaptation models; Catheters; Couplings; Estimation; Frequency domain analysis; Noise; Pattern analysis; Atrial fibrillation (AF); electrogram; group least absolute selection and shrinkage operator (LASSO); partial directed coherence (PDC); propagation pattern analysis; Algorithms; Atrial Fibrillation; Computer Simulation; Electrocardiography; Humans; Models, Cardiovascular; Pattern Recognition, Automated; Signal Processing, Computer-Assisted;
Journal_Title :
Biomedical Engineering, IEEE Transactions on
DOI :
10.1109/TBME.2012.2187054