Title :
Detecting Algorithmically Generated Domain-Flux Attacks With DNS Traffic Analysis
Author :
Yadav, Sandeep ; Reddy, Ashwath Kumar Krishna ; Reddy, A. L Narasimha ; Ranjan, Supranamaya
Author_Institution :
Dept. of Electr. & Comput. Eng., Texas A&M Univ., College Station, TX, USA
Abstract :
Recent botnets such as Conficker, Kraken, and Torpig have used DNS-based “domain fluxing” for command-and-control, where each Bot queries for existence of a series of domain names and the owner has to register only one such domain name. In this paper, we develop a methodology to detect such “domain fluxes” in DNS traffic by looking for patterns inherent to domain names that are generated algorithmically, in contrast to those generated by humans. In particular, we look at distribution of alphanumeric characters as well as bigrams in all domains that are mapped to the same set of IP addresses. We present and compare the performance of several distance metrics, including K-L distance, Edit distance, and Jaccard measure. We train by using a good dataset of domains obtained via a crawl of domains mapped to all IPv4 address space and modeling bad datasets based on behaviors seen so far and expected. We also apply our methodology to packet traces collected at a Tier-1 ISP and show we can automatically detect domain fluxing as used by Conficker botnet with minimal false positives, in addition to discovering a new botnet within the ISP trace. We also analyze a campus DNS trace to detect another unknown botnet exhibiting advanced domain-name generation technique.
Keywords :
IP networks; Internet; computer network security; telecommunication traffic; Bot queries; Conficker Botnet; DNS traffic analysis; DNS-based domain fluxing; IPv4 address; Jaccard measure; K-L distance metric; advanced domain-name generation technique; algorithmically generated domain-flux attack detection; alphanumeric character distribution; command-and-control; edit distance; packet traces; tier-1 ISP; Dictionaries; Generators; IP networks; Indexes; Measurement; Prediction algorithms; Servers; Components; Edit distance; IP fast flux; Jaccard index; domain flux; domain names; entropy; malicious;
Journal_Title :
Networking, IEEE/ACM Transactions on
DOI :
10.1109/TNET.2012.2184552