DocumentCode :
1447264
Title :
Producing computationally efficient KPCA-based feature extraction for classification problems
Author :
Xu, Yan ; Lin, Chong ; Zhao, Wanfang
Author_Institution :
Bio-Comput. Res. Center, Harbin Inst. of Technol., Shenzhen, China
Volume :
46
Issue :
6
fYear :
2010
Firstpage :
452
Lastpage :
453
Abstract :
An improvement to kernel principal component analysis (KPCA) to produce computationally efficient KPCA-based feature extraction is proposed. This improvement is applicable to all cases no matter whether the samples in the feature space have zero mean or not. Experiments on several benchmark datasets show that the improvement performs well in classification problems.
Keywords :
feature extraction; principal component analysis; KPCA-based feature extraction; classification problems; kernel principal component analysis;
fLanguage :
English
Journal_Title :
Electronics Letters
Publisher :
iet
ISSN :
0013-5194
Type :
jour
DOI :
10.1049/el.2010.2814
Filename :
5434642
Link To Document :
بازگشت