DocumentCode :
1448881
Title :
Design and Analysis of the Droop Control Method for Parallel Inverters Considering the Impact of the Complex Impedance on the Power Sharing
Author :
Yao, Wei ; Chen, Min ; Matas, José ; Guerrero, Josep M. ; Qian, Zhao-ming
Author_Institution :
Coll. of Electr. Eng., Zhejiang Univ., Hangzhou, China
Volume :
58
Issue :
2
fYear :
2011
Firstpage :
576
Lastpage :
588
Abstract :
This paper investigates the characteristics of the active and reactive power sharing in a parallel inverters system under different system impedance conditions. The analyses conclude that the conventional droop method cannot achieve efficient power sharing for the case of a system with complex impedance condition. To achieve the proper power balance and minimize the circulating current in the different impedance situations, a novel droop controller that considers the impact of complex impedance is proposed in this paper. This controller can simplify the coupled active and reactive power relationships, which are caused by the complex impedance in the parallel system. In addition, a virtual complex impedance loop is included in the proposed controller to minimize the fundamental and harmonic circulating current that flows in the parallel system. Compared to the other methods, the proposed controller can achieve accurate power sharing, offers efficient dynamic performance, and is more adaptive to different line impedance situations. Simulation and experimental results are presented to prove the validity and the improvements achieved by the proposed controller.
Keywords :
control system synthesis; invertors; active power sharing; droop control method; harmonic circulating current; parallel inverters system; reactive power sharing; virtual complex impedance loop; Circulating current; droop method; impedance; parallel inverters;
fLanguage :
English
Journal_Title :
Industrial Electronics, IEEE Transactions on
Publisher :
ieee
ISSN :
0278-0046
Type :
jour
DOI :
10.1109/TIE.2010.2046001
Filename :
5437251
Link To Document :
بازگشت