DocumentCode :
1449386
Title :
Model-based probability density function estimation
Author :
Kay, Steven
Author_Institution :
Dept. of Electr. & Comput. Eng., Rhode Island Univ., Kingston, RI, USA
Volume :
5
Issue :
12
fYear :
1998
Firstpage :
318
Lastpage :
320
Abstract :
Noting that the probability density function of a continuous random variable has similar properties to a power spectral density, a new class of probability density function estimators is described. The specific model examined is the autoregressive model, although the extension to other time series models is evident. An example is given to illustrate the approach.
Keywords :
autoregressive processes; parameter estimation; probability; random processes; spectral analysis; time series; autoregressive model; continuous random variable; power spectral density; probability density function estimation; time series models; Autocorrelation; Autoregressive processes; Density functional theory; Equations; Fourier transforms; Parameter estimation; Probability density function; Random variables; Spectral analysis; Tail;
fLanguage :
English
Journal_Title :
Signal Processing Letters, IEEE
Publisher :
ieee
ISSN :
1070-9908
Type :
jour
DOI :
10.1109/97.735424
Filename :
735424
Link To Document :
بازگشت