Title :
Rates of Convergence of the Functional
-Nearest Neighbor Estimate
Author :
Biau, Gé Rard ; Cérou, Fré Dé ric ; Guyader, Arnaud
Author_Institution :
LSTA, Univ. Pierre et Marie Curie-Paris VI, Paris, France
fDate :
4/1/2010 12:00:00 AM
Abstract :
Let F be a separable Banach space, and let (X, Y) be a random pair taking values in F Ã R. Motivated by a broad range of potential applications, we investigate rates of convergence of the k-nearest neighbor estimate rn (x) of the regression function r(x) = E[Y|X = x], based on n independent copies of the pair (X, Y). Using compact embedding theory, we present explicit and general finite sample bounds on the expected squared difference E[rn(X) - r(X)]2, and particularize our results to classical function spaces such as Sobolev spaces, Besov spaces, and reproducing kernel Hilbert spaces.
Keywords :
Banach spaces; Hilbert spaces; pattern recognition; regression analysis; Besov spaces; Sobolev spaces; classical function spaces; compact embedding theory; functional k-nearest neighbor estimate; regression function; reproducing kernel Hilbert spaces; separable Banach space; squared difference; Convergence; Data analysis; Hilbert space; Kernel; Nearest neighbor searches; Pattern recognition; Random variables; Speech analysis; Standards development; Statistical learning; Compact embedding; Sobolev space; nearest neighbor estimate; rates of convergence; regression estimation; reproducing kernel Hilbert space;
Journal_Title :
Information Theory, IEEE Transactions on
DOI :
10.1109/TIT.2010.2040857