Title :
Increased throughput for the testing and repair of RAMs with redundancy
Author :
Haddad, Ramsey W. ; Dahbura, Anton T. ; Sharma, Anup B.
Author_Institution :
Digital Equipment Corp., Palo Alto, CA, USA
fDate :
2/1/1991 12:00:00 AM
Abstract :
The problem of determining whether a redundant random-access memory (RRAM) containing faulty memory cells can be repaired with spare rows and columns is discussed. The approach is to increase the number of working RRAMs manufactured per unit time, rather than per wafer, by presenting a computationally efficient algorithm for detecting unrepairability, a computationally efficient algorithm for optimal repair for special patterns of faulty memory cells and online algorithms that can find an optimal repair or else detect unrepairability during memory testing, aborting unnecessary testing. Experimental validation of the approach is given that is based on industrial device fabrication data
Keywords :
integrated circuit testing; integrated memory circuits; random-access storage; RRAM; computationally efficient algorithm; faulty memory cells; industrial device fabrication data; memory testing; online algorithms; optimal repair; redundancy; redundant random-access memory; repair; testing; unrepairability; Computer aided manufacturing; Costs; Fabrication; Fault detection; Production; Random access memory; Read-write memory; Redundancy; Testing; Throughput;
Journal_Title :
Computers, IEEE Transactions on