Title :
Energy-Efficient Transmission Scheduling With Strict Underflow Constraints
Author :
Shuman, David I. ; Liu, Mingyan ; Wu, Owen Q.
Author_Institution :
Inst. of Electr. Eng., Ecole Polytech. Fed. de Lausanne, Lausanne, Switzerland
fDate :
3/1/2011 12:00:00 AM
Abstract :
This paper considers a single source transmitting data to one or more receivers/users over a shared wireless channel. Due to random fading, the wireless channel conditions vary with time and from user to user. Each user has a buffer to store received packets before they are drained. At each time step, the source determines how much power to use for transmission to each user. The source´s objective is to dynamically allocate power in a manner that minimizes total power consumption and packet holding costs, while satisfying strict buffer underflow constraints and a joint power constraint in each slot. The primary application motivating this problem is wireless media streaming. For this application, the buffer underflow constraints prevent the user buffers from emptying, so as to maintain playout quality. In the case of a single user, a state-dependent modified base-stock policy is shown to be optimal with linear power-rate curves, and a state-dependent finite generalized base-stock policy is shown to be optimal with piecewise-linear convex power-rate curves. When certain technical conditions are satisfied, efficient methods to compute the critical numbers that complete the characterizations of the optimal control laws in each of these cases are presented. The structure of the optimal policy for the case of two users is then analyzed.
Keywords :
dynamic programming; fading channels; media streaming; piecewise linear techniques; scheduling; buffer underflow constraint; dynamic programming; energy-efficient transmission scheduling; linear power-rate curve; optimal control; packet holding cost; piecewise-linear convex power-rate curve; playout quality; power allocation; power constraint; power consumption; random fading; received packet; shared wireless channel; single source transmitting data; state-dependent finite generalized base-stock policy; state-dependent modified base-stock policy; strict underflow constraint; wireless media streaming; Delay; Media; Optimal scheduling; Power demand; Receivers; Throughput; Wireless communication; Base-stock policy; dynamic programming; energy-delay tradeoff; opportunistic scheduling; resource allocation; stochastic inventory theory; underflow constraints; wireless media streaming;
Journal_Title :
Information Theory, IEEE Transactions on
DOI :
10.1109/TIT.2011.2105002