DocumentCode :
1454275
Title :
Expander graph arguments for message-passing algorithms
Author :
Burshtein, David ; Miller, Gadi
Author_Institution :
Dept. of Electr. Eng.-Syst., Tel Aviv Univ., Israel
Volume :
47
Issue :
2
fYear :
2001
fDate :
2/1/2001 12:00:00 AM
Firstpage :
782
Lastpage :
790
Abstract :
We show how expander-based arguments may be used to prove that message-passing algorithms can correct a linear number of erroneous messages. The implication of this result is that when the block length is sufficiently large, once a message-passing algorithm has corrected a sufficiently large fraction of the errors, it will eventually correct all errors. This result is then combined with known results on the ability of message-passing algorithms to reduce the number of errors to an arbitrarily small fraction for relatively high transmission rates. The results hold for various message-passing algorithms, including Gallager´s hard-decision and soft-decision (with clipping) decoding algorithms. Our results assume low-density parity-check (LDPC) codes based on an irregular bipartite graph
Keywords :
belief networks; error correction codes; graph theory; iterative decoding; message passing; Gallager´s hard-decision decoding algorithms; LDPC codes; block length; erroneous messages correction; error correction; expander graph arguments; irregular bipartite graph; low-density parity-check codes; message-passing algorithms; relatively high transmission rates; soft-decision decoding algorithms; Bipartite graph; Error correction; Graph theory; Iterative algorithms; Iterative decoding; Maximum likelihood decoding; Message passing; Parity check codes; Switches; Turbo codes;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/18.910588
Filename :
910588
Link To Document :
بازگشت