DocumentCode :
1454291
Title :
A Computationally Efficient Method for Simulating Metal-Nanowire Dipole Antennas at Infrared and Longer Visible Wavelengths
Author :
Pantoja, Mario Fernández ; Bray, Matthew G. ; Werner, Douglas H. ; Werner, Pingjuan L. ; Bretones, Amelia Rubio
Author_Institution :
Dept. of Electromagnetismo y Fis. de la Materia, Univ. de Granada, Granada, Spain
Volume :
11
Issue :
2
fYear :
2012
fDate :
3/1/2012 12:00:00 AM
Firstpage :
239
Lastpage :
246
Abstract :
This paper presents a numerically efficient approach for simulating nanowires at infrared and long optical wavelengths. A computationally efficient circuit-equivalent modeling approach based on the electric-field integral-equation (EFIE) formulation is employed to simulate the highly dispersive behavior of nanowires at short wavelengths. The proposed approach can be used both for frequency-domain and for time-domain EFIE formulations. In comparison with widely used full-wave solutions achieved through the finite-difference time-domain method, the circuit-based EFIE formulation results in a sharp reduction of the computational resources while retaining high accuracy.
Keywords :
dipole antennas; equivalent circuits; finite difference time-domain analysis; frequency-domain analysis; infrared spectra; integral equations; nanowires; visible spectra; circuit-equivalent modeling approach; dispersive behavior; electric-field integral-equation formulation; finite-difference time-domain analysis; frequency-domain EFIE formulation; infrared spectra; metal-nanowire dipole antennas; time-domain EFIE formulation; Computational modeling; Impedance; Integrated circuit modeling; Mathematical model; Nanowires; Numerical models; Time domain analysis; Computational nanotechnology; integral equations; time-domain analysis;
fLanguage :
English
Journal_Title :
Nanotechnology, IEEE Transactions on
Publisher :
ieee
ISSN :
1536-125X
Type :
jour
DOI :
10.1109/TNANO.2011.2117438
Filename :
5716676
Link To Document :
بازگشت