DocumentCode :
1455530
Title :
Recognizing vehicles in infrared images using IMAP parallel vision board
Author :
Kagesawa, Masataka ; Ueno, Shinichi ; Ikeuchi, Katsushi ; Kashiwagi, Hiroshi
Author_Institution :
Tokyo Univ., Japan
Volume :
2
Issue :
1
fYear :
2001
fDate :
3/1/2001 12:00:00 AM
Firstpage :
10
Lastpage :
17
Abstract :
Describes a method for vehicle recognition, in particular for recognizing make and model. Our system takes into account the fact that vehicles of the same make and model number come in different colors; it employs infrared (IR) images, thereby eliminating color differences. The use of IR images also enables us to use the same algorithm both day and night. This ability is particularly important because the algorithm must be able to locate many feature points, especially at night. Our algorithm is based on a configuration of local features. For the algorithm, our system first makes a compressed database of local features of a target vehicle from training images given in advance; the system then matches a set of local features in the input image with those in the training images for recognition. This method has the following three advantages: (1) it can detect even if part of the target vehicle is occluded; (2) it can detect even if the target vehicle is translated due to running out of the lanes; and (3) it does not require us to segment a vehicle part from input images. We have two implementations of the algorithm. One is referred to as the eigenwindow method, while the other is called the vector-quantization method. The former method is good at recognition, but is not very fast. The latter method is not very good at recognition but it is suitable for an IMAP parallel image-processing board; hence, it can be fast. In both implementations, the above-mentioned advantages have been confirmed by performing outdoor experiments
Keywords :
automated highways; eigenvalues and eigenfunctions; image processing equipment; image recognition; infrared imaging; object recognition; parallel processing; road vehicles; vector quantisation; visual databases; IMAP parallel vision board; IR images; VQ; compressed database; eigenwindow; infrared images; vector-quantization method; vehicle recognition; Image recognition; Image segmentation; Image sensors; Infrared imaging; Roads; Space vehicles; Switches; Target recognition; Vehicle detection; Velocity measurement;
fLanguage :
English
Journal_Title :
Intelligent Transportation Systems, IEEE Transactions on
Publisher :
ieee
ISSN :
1524-9050
Type :
jour
DOI :
10.1109/6979.911081
Filename :
911081
Link To Document :
بازگشت