DocumentCode :
1457367
Title :
Estimation and identification for 2-D block Kalman filtering
Author :
Azimi-Sadjadi, Mahmood R.
Author_Institution :
Dept. of Electr. Eng., Colorado State Univ., Fort Collins, CO, USA
Volume :
39
Issue :
8
fYear :
1991
fDate :
8/1/1991 12:00:00 AM
Firstpage :
1885
Lastpage :
1889
Abstract :
The development of a recursive identification and estimation procedure for two-dimensional block Kalman filtering is discussed. The recursive identification scheme can be used online to update the image model parameters at each iteration based on the local statistics within a block of the observed noisy image. The covariance matrix of the driving noise can also be estimated at each iteration of this algorithm. A recursive procedure for computing the parameters of the higher order models is given. Simulation results are also provided
Keywords :
Kalman filters; adaptive filters; filtering and prediction theory; identification; parameter estimation; picture processing; 2-D block Kalman filtering; adaptive filtering; covariance matrix; driving noise; estimation procedure; higher order models; image model parameters; image restoration; iteration; noisy image; recursive identification; Autoregressive processes; Computational modeling; Covariance matrix; Filtering; Higher order statistics; Image restoration; Kalman filters; Pixel; Recursive estimation; Strips;
fLanguage :
English
Journal_Title :
Signal Processing, IEEE Transactions on
Publisher :
ieee
ISSN :
1053-587X
Type :
jour
DOI :
10.1109/78.91158
Filename :
91158
Link To Document :
بازگشت