DocumentCode :
1458396
Title :
On the infeasibility of training neural networks with small mean-squared error
Author :
Vu, Van H.
Author_Institution :
Dept. of Math., Yale Univ., New Haven, CT, USA
Volume :
44
Issue :
7
fYear :
1998
fDate :
11/1/1998 12:00:00 AM
Firstpage :
2892
Lastpage :
2900
Abstract :
We demonstrate that the problem of training neural networks with small mean-squared error is computationally intractable. This answers a question posed by Jones (1997)
Keywords :
learning (artificial intelligence); mean square error methods; neural nets; neural networks training; small mean-squared error neural networks; Computer errors; Computer networks; Computer science; Interpolation; Mathematics; NP-hard problem; Neural networks; Polynomials; Seminars; Springs;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/18.737520
Filename :
737520
Link To Document :
بازگشت