DocumentCode :
1458936
Title :
Entropic aspects of random fields on trees
Author :
Berger, Toby ; Ye, Zhongxing
Author_Institution :
Sch. of Electr. Eng., Cornell Univ., Ithaca, NY, USA
Volume :
36
Issue :
5
fYear :
1990
fDate :
9/1/1990 12:00:00 AM
Firstpage :
1006
Lastpage :
1018
Abstract :
The existence of the entropy rate of shift-invariant random fields on binary trees is proven. Alternative representations of and bounds for the entropy rate and surface entropy rate are obtained in terms of conditional entropy. Particular emphasis is placed on Markov chain fields on trees; explicit results are obtained, some of which extend to a more complicated class of tree models
Keywords :
Markov processes; entropy; information theory; trees (mathematics); Markov chain fields; binary trees; conditional entropy; entropy rate; information theory; shift-invariant random fields; surface entropy rate; Binary trees; Circuits; Entropy; Helium; Information theory; Joining processes; Military computing; Physics; Tree graphs;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/18.57200
Filename :
57200
Link To Document :
بازگشت