Title :
On orthonormal Muntz-Laguerre filters
Author_Institution :
INTEC, IMEC, Leuven, Belgium
fDate :
4/1/2001 12:00:00 AM
Abstract :
When the Muntz-Szasz (1953) condition holds, the Muntz-Laguerre filters form a uniformly bounded orthonormal basis in Hardy space. This has consequences in terms of optimal pole-cancellation schemes, and it also allows for a generalization of Lerch´s theorem
Keywords :
filtering theory; poles and zeros; Hardy space; Lerch´s theorem; Muntz-Szasz condition; optimal pole-cancellation; orthonormal Muntz-Laguerre filters; uniformly bounded orthonormal basis; Filtering; Filters; H infinity control; Hilbert space; Inspection; Laplace equations; Linear systems; Veins;
Journal_Title :
Signal Processing, IEEE Transactions on