DocumentCode :
1459462
Title :
Application of ultra-wide band radar for classification of human activities
Author :
Bryan, J.D. ; Kwon, Joonsoo ; Lee, Namyoon ; Kim, Youngjae
Author_Institution :
Dept. of Electr. & Comput. Eng., California State Univ. at Fresno, Fresno, CA, USA
Volume :
6
Issue :
3
fYear :
2012
fDate :
3/1/2012 12:00:00 AM
Firstpage :
172
Lastpage :
179
Abstract :
The authors investigate the feasibility of classifying different human activities using ultra-wide band (UWB) radar. Eight human subjects performing eight different activities are measured using a UWB radar. The eight activities include walking, running, rotating, punching, jumping, transitioning between standing and sitting, crawling and standing still. The dimension of the UWB returns is reduced using principal component analysis (PCA). The time-varying UWB signatures are characterised within a time window through observing the variation of the PCA coefficients. A support vector machine (SVM) is used to classify the activities based on the signatures. A multi-class classification is implemented using a one-versus-one method. Optimal parameters for the SVM are found through a 4-fold cross-validation. The resulting classification accuracy is found to be more than 85%. The potential of classifying human activities with different ground planes and with cluttered environments is also investigated. To extract more information regarding the target motion, human walking style classification with the developed method is also discussed.
Keywords :
principal component analysis; radar imaging; support vector machines; ultra wideband radar; human activities; jumping; principal component analysis; punching; rotating; running; support vector machine; time varying UWB signatures; transitioning; ultrawide band radar; walking;
fLanguage :
English
Journal_Title :
Radar, Sonar & Navigation, IET
Publisher :
iet
ISSN :
1751-8784
Type :
jour
DOI :
10.1049/iet-rsn.2011.0101
Filename :
6159151
Link To Document :
بازگشت