DocumentCode :
1460812
Title :
Improving the error backpropagation algorithm with a modified error function
Author :
Oh, Sang-Hoon
Author_Institution :
Res. Dept., Electron. & Telecommun. Res. Inst., Taejon, South Korea
Volume :
8
Issue :
3
fYear :
1997
fDate :
5/1/1997 12:00:00 AM
Firstpage :
799
Lastpage :
803
Abstract :
This letter proposes a modified error function to improve the error backpropagation (EBP) algorithm of multilayer perceptrons (MLPs) which suffers from slow learning speed. To accelerate the learning speed of the EBP algorithm, the proposed method reduces the probability that output nodes are near the wrong extreme value of sigmoid activation function. This is acquired through a strong error signal for the incorrectly saturated output node and a weak error signal for the correctly saturated output node. The weak error signal for the correctly saturated output node, also, prevents overspecialization of learning for training patterns. The effectiveness of the proposed method is demonstrated in a handwritten digit recognition task
Keywords :
backpropagation; multilayer perceptrons; transfer functions; EBP; MLP; correctly saturated output node; error backpropagation algorithm; handwritten digit recognition task; incorrectly saturated output node; modified error function; multilayer perceptrons; sigmoid activation function; strong error signal; weak error signal; Acceleration; Backpropagation algorithms; Error correction; Handwriting recognition; Iterative algorithms; Multilayer perceptrons; Pattern recognition; Signal processing; Signal resolution; Telecommunications;
fLanguage :
English
Journal_Title :
Neural Networks, IEEE Transactions on
Publisher :
ieee
ISSN :
1045-9227
Type :
jour
DOI :
10.1109/72.572117
Filename :
572117
Link To Document :
بازگشت