Title :
A comparison between HMLP and HRBF for attitude control
Author :
Fortuna, Luigi ; Muscato, Giovanni ; Xibilia, Maria Gabriella
Author_Institution :
Dipartimento Elettrico Elettronico e Sistemistico, Catania Univ., Italy
fDate :
3/1/2001 12:00:00 AM
Abstract :
In this paper the problem of controlling the attitude of a rigid body, such as a Spacecraft, in three-dimensional space is approached by introducing two new control strategies developed in hypercomplex algebra. The proposed approaches are based on two parallel controllers, both derived in quaternion algebra. The first is a feedback controller of the proportional derivative (PD) type, while the second is a feedforward controller, which is implemented either by means of a hypercomplex multilayer perceptron (HMLP) neural network or by means of a hypercomplex radial basis function (HRBF) neural network. Several simulations show the performance of the two approaches. The results are also compared with a classical PD controller and with an adaptive controller, showing the improvements obtained by using neural networks, especially when an external disturbance acts on the rigid body. In particular the HMLP network gave better results when considering trajectories not presented during the learning phase
Keywords :
adaptive control; algebra; attitude control; feedback; multilayer perceptrons; neurocontrollers; radial basis function networks; two-term control; 3D space; HMLP; HRBF; MLP; PD feedback controller; RBF neural network; Spacecraft; attitude control; feedforward controller; hypercomplex algebra; hypercomplex multilayer perceptron; hypercomplex radial basis function neural network; quaternion algebra; rigid body; Adaptive control; Algebra; Attitude control; Feedforward neural networks; Multi-layer neural network; Neural networks; PD control; Proportional control; Quaternions; Space vehicles;
Journal_Title :
Neural Networks, IEEE Transactions on