Title :
The convergence properties of a clipped Hopfield network and its application in the design of keystream generator
Author :
Chan, Chi-Kwong ; Cheng, L.M.
Author_Institution :
Dept. of Electron. Eng., City Univ. of Hong Kong, China
fDate :
3/1/2001 12:00:00 AM
Abstract :
We first present a modified Hopfield network, the clipped Hopfield network, with synaptic weights assigned to three values {-1,0,+1}. We give the necessary conditions under which a set of 2n binary vectors can be stored as stable points of the network. We show that in the parallel updating mode, for most of the state vectors, the network will always converge to these 2n stable points. We further demonstrate that these 2n stable points can be divided into two groups, the α group and the β group, each with n stable points. It is shown that the basins of attraction of the stable points in the α group are evenly distributed, and the basins of attraction of the stable points in the β group are also evenly distributed. By ways of application, we show that this class of Hopfield network can be used to build a cryptographically secure keystream generator
Keywords :
Hopfield neural nets; convergence; cryptography; attraction basins; binary vector storage; clipped Hopfield neural network; convergence properties; cryptographically secure keystream generator design; parallel updating mode; stable points; state vectors; synaptic weights; Convergence; Cryptography; Decoding; Difference equations; Dynamic range; Encoding; Intelligent networks; Limit-cycles; Neurons; Very large scale integration;
Journal_Title :
Neural Networks, IEEE Transactions on