DocumentCode :
1465186
Title :
Analysis of errors in sampled-data systems
Author :
Sklansky, Jack ; Ragazzini, J. R.
Author_Institution :
Columbia University Engineering Center, New York, N. Y.
Volume :
74
Issue :
7
fYear :
1955
fDate :
7/1/1955 12:00:00 AM
Firstpage :
606
Lastpage :
606
Abstract :
THE system error ε(t) in a sampled-data feedback system is an important design parameter. It is defined as the difference between the actual output c(t) and the desired output cd(t), i.e., \\epsilon (t) \\buildrel {\\triangle}\\over {=} c_{d}(t)-c(t) . The system error has two components: (1) organic error, due to system energy storages; and (2) ripple, due to the sampling process. Formulation of these errors is obtained through the use of z-transform1 and ordinary Laplace transform techniques. (z-transforms are merely Laplace transforms of pulsed data and are usually rational functions in εsT in which εsT has been replaced by z.)
Keywords :
Energy storage; Equations; Laplace equations; Mean square error methods; Smoothing methods; Steady-state; Transfer functions;
fLanguage :
English
Journal_Title :
Electrical Engineering
Publisher :
ieee
ISSN :
0095-9197
Type :
jour
DOI :
10.1109/EE.1955.6439470
Filename :
6439470
Link To Document :
بازگشت