Title :
Transformation of General Binary MRF Minimization to the First-Order Case
Author :
Ishikawa, Hiroshi
Author_Institution :
Dept. of Comput. Sci. & Eng., Waseda Univ., Tokyo, Japan
fDate :
6/1/2011 12:00:00 AM
Abstract :
We introduce a transformation of general higher-order Markov random field with binary labels into a first-order one that has the same minima as the original. Moreover, we formalize a framework for approximately minimizing higher-order multilabel MRF energies that combines the new reduction with the fusion-move and QPBO algorithms. While many computer vision problems today are formulated as energy minimization problems, they have mostly been limited to using first-order energies, which consist of unary and pairwise clique potentials, with a few exceptions that consider triples. This is because of the lack of efficient algorithms to optimize energies with higher-order interactions. Our algorithm challenges this restriction that limits the representational power of the models so that higher-order energies can be used to capture the rich statistics of natural scenes. We also show that some minimization methods can be considered special cases of the present framework, as well as comparing the new method experimentally with other such techniques.
Keywords :
Markov processes; computer vision; Markov random field; QPBO algorithms; computer vision problems; first-order case; general binary MRF minimization transformation; Belief propagation; Computer vision; Energy capture; Higher order statistics; Image segmentation; Layout; Markov random fields; Minimization methods; Optimization methods; Stereo vision; Energy minimization; graph cuts.; higher-order MRFs; pseudo-Boolean function; Algorithms; Artificial Intelligence; Image Enhancement; Markov Chains; Pattern Recognition, Automated;
Journal_Title :
Pattern Analysis and Machine Intelligence, IEEE Transactions on
DOI :
10.1109/TPAMI.2010.91