DocumentCode :
1465835
Title :
Fast Nonnegative Matrix/Tensor Factorization Based on Low-Rank Approximation
Author :
Zhou, Guoxu ; Cichocki, Andrzej ; Xie, Shengli
Author_Institution :
Lab. for Adv. Brain Signal Process., RIKEN, Wako, Japan
Volume :
60
Issue :
6
fYear :
2012
fDate :
6/1/2012 12:00:00 AM
Firstpage :
2928
Lastpage :
2940
Abstract :
Nonnegative matrix factorization (NMF) algorithms often suffer from slow convergence speed due to the nonnegativity constraints, especially for large-scale problems. Low-rank approximation methods such as principle component analysis (PCA) are widely used in matrix factorizations to suppress noise, reduce computational complexity and memory requirements. However, they cannot be applied to NMF directly so far as they result in factors with mixed signs. In this paper, low-rank approximation is introduced to NMF (named lraNMF), which is not only able to reduce the computational complexity of NMF algorithms significantly, but also suppress bipolar noise. In fact, the new update rules are typically about times faster than traditional ones of NMF, here is the number of observations and is the low rank of latent factors. Therefore lraNMF is particularly efficient in the case where , which is the general case in NMF. The proposed update rules can also be incorporated into most existing NMF algorithms straightforwardly as long as they are based on Euclidean distance. Then the concept of lraNMF is generalized to the tensor field to perform a fast sequential nonnegative Tucker decomposition (NTD). By applying the proposed methods, the practicability of NMF/NTD is significantly improved. Simulations on synthetic and real data show the validity and efficiency of the proposed approaches.
Keywords :
approximation theory; computational complexity; geometry; matrix decomposition; principal component analysis; Euclidean distance; PCA; computational complexity reduction; fast nonnegative matrix/tensor factorization; fast sequential nonnegative Tucker decomposition; large-scale problems; low-rank approximation methods; memory requirements; noise suppression; nonnegativity constraints; principle component analysis; Approximation algorithms; Approximation methods; Complexity theory; Convergence; Matrix decomposition; Signal processing algorithms; Tensile stress; Low-rank approximation; nonnegative Tucker decomposition (NTD); nonnegative matrix factorization (NMF); principle component analysis (PCA);
fLanguage :
English
Journal_Title :
Signal Processing, IEEE Transactions on
Publisher :
ieee
ISSN :
1053-587X
Type :
jour
DOI :
10.1109/TSP.2012.2190410
Filename :
6166354
Link To Document :
بازگشت