Title :
Semisupervised Classification of Remote Sensing Images With Active Queries
Author :
Munoz-Marí, Jordi ; Tuia, Devis ; Camps-Valls, Gustavo
Author_Institution :
Image Process. Lab., Univ. de Valencia, València, Spain
Abstract :
We propose a semiautomatic procedure to generate land cover maps from remote sensing images. The proposed algorithm starts by building a hierarchical clustering tree, and exploits the most coherent pixels with respect to the available class information. For a given amount of labeled pixels, the algorithm returns both classification and confidence maps. Since the quality of the map depends of the number and informativeness of the labeled pixels, active learning methods are used to select the most informative samples to increase confidence in class membership. Experiments on four different data sets, accounting for hyperspectral and multispectral images at different spatial resolutions, confirm the effectiveness of the proposed approach, and how active learning techniques reduce the uncertainty of the classification maps. Specifically, more accurate results with fewer labeled samples are obtained. Inclusion of spatial information in the classifiers drastically improves the classification accuracy, leading to faster convergence curves and tighter confidence intervals. In conclusion, the presented algorithm provides efficient image classification and, at the same time, yields a confidence map that may be very useful in many Earth observation applications.
Keywords :
geophysical image processing; image classification; image resolution; image segmentation; pattern clustering; remote sensing; terrain mapping; trees (mathematics); Earth observation applications; active learning methods; active queries; available class information; class membership; classification accuracy; classification maps; coherent pixels; confidence intervals; confidence maps; convergence curves; hierarchical clustering tree; hyperspectral images; image segmentation; informative samples; labeled pixels; land cover maps; map quality; multispectral images; remote sensing image semisupervised classification; semiautomatic procedure; spatial resolutions; Accuracy; Clustering algorithms; Hyperspectral imaging; Partitioning algorithms; Spatial resolution; Active learning; clustering; image classification; image segmentation; interactive classification; semisupervised learning;
Journal_Title :
Geoscience and Remote Sensing, IEEE Transactions on
DOI :
10.1109/TGRS.2012.2185504