DocumentCode :
1466667
Title :
EcoG: A Power-Efficient GPU Cluster Architecture for Scientific Computing
Author :
Showerman, Michael ; Enos, Jeremy ; Steffen, Craig ; Treichler, Sean ; Gropp, William ; Hwu, Wen-Mei W.
Author_Institution :
Stanford Univ., Stanford, CA, USA
Volume :
13
Issue :
2
fYear :
2011
Firstpage :
83
Lastpage :
87
Abstract :
Researchers built the EcoG GPU-based cluster to show that a system can be designed around GPU computing and still be power efficient.
Keywords :
computer graphic equipment; coprocessors; pattern clustering; power aware computing; EcoG; power efficient GPU cluster architecture; scientific computing; Computer architecture; Computer science; Graphics processing unit; Green products; Hardware; Power measurement; Scientific computing; CUDA; GPUs; Graphics processing; Nvidia; scientific computing;
fLanguage :
English
Journal_Title :
Computing in Science & Engineering
Publisher :
ieee
ISSN :
1521-9615
Type :
jour
DOI :
10.1109/MCSE.2011.30
Filename :
5725240
Link To Document :
بازگشت