DocumentCode :
1467938
Title :
A modified Baum-Welch algorithm for hidden Markov models with multiple observation spaces
Author :
Baggenstoss, Paul M.
Author_Institution :
Naval Underwater Syst. Center, Newport, RI, USA
Volume :
9
Issue :
4
fYear :
2001
fDate :
5/1/2001 12:00:00 AM
Firstpage :
411
Lastpage :
416
Abstract :
We derive an algorithm similar to the well-known Baum-Welch (1970) algorithm for estimating the parameters of a hidden Markov model (HMM). The new algorithm allows the observation PDF of each state to be defined and estimated using a different feature set. We show that estimating parameters in this manner is equivalent to maximizing the likelihood function for the standard parameterization of the HMM defined on the input data space. The processor becomes optimal if the state-dependent feature sets are sufficient statistics to distinguish each state individually from a common state
Keywords :
hidden Markov models; parameter estimation; speech recognition; statistical analysis; HMM; hidden Markov models; input data space; maximum likelihood function; modified Baum-Welch algorithm; multiple observation spaces; observation PDF; parameter estimation; processor; state-dependent feature sets; sufficient statistics; Error analysis; Estimation error; Helium; Hidden Markov models; Maximum likelihood estimation; Parameter estimation; Performance loss; State estimation; Statistics; Stochastic processes;
fLanguage :
English
Journal_Title :
Speech and Audio Processing, IEEE Transactions on
Publisher :
ieee
ISSN :
1063-6676
Type :
jour
DOI :
10.1109/89.917686
Filename :
917686
Link To Document :
بازگشت