DocumentCode :
1468103
Title :
Spherically Imploding Plasma Liners as a Standoff Driver for Magnetoinertial Fusion
Author :
Hsu, S.C. ; Awe, T.J. ; Brockington, S. ; Case, A. ; Cassibry, J.T. ; Kagan, G. ; Messer, S.J. ; Stanic, M. ; Tang, X. ; Welch, D.R. ; Witherspoon, F.D.
Author_Institution :
Phys. Div., Los Alamos Nat. Lab., Los Alamos, NM, USA
Volume :
40
Issue :
5
fYear :
2012
fDate :
5/1/2012 12:00:00 AM
Firstpage :
1287
Lastpage :
1298
Abstract :
Spherically imploding plasma liners formed by merging an array of high Mach number plasma jets are a proposed standoff driver for magnetoinertial fusion (MIF). This paper gives an updated concept-level overview of plasma liner MIF, including advanced notions such as standoff methods for forming and magnetizing the fuel target and liner shaping to optimize dwell time. Results from related 1-D radiation-hydrodynamic simulations of targetless plasma liner implosions are summarized along with new analysis on the efficiency of conversion of the initial liner kinetic energy to stagnation thermal energy. The plasma liner experiment (PLX), a multi-institutional collaboration led by the Los Alamos National Laboratory, plans to explore the feasibility of forming spherically imploding plasma liners via 30 merging plasma jets. In the near term, with modest pulsed power stored energy of ≲1.5 MJ, PLX is focusing on the generation of centimeter-, microsecond-, and megabar-scale plasmas for the fundamental study of high energy density laboratory plasmas. In the longer term, PLX can enable a research and development path to plasma liner MIF ultimately requiring compressing magnetized fusion fuel to ≳100 Mbar.
Keywords :
Mach number; explosions; fusion reactor fuel; fusion reactor targets; plasma density; plasma jets; plasma production; plasma simulation; 1-D radiation-hydrodynamic simulations; Los Alamos National Laboratory; centimeter-scale plasma generation; compressing magnetized fusion fuel; conversion efficiency; fuel target magnetization; fusion reactors; high Mach number plasma jet array; high energy density laboratory plasmas; initial liner kinetic energy; magnetoinertial fusion; megabar-scale plasma generation; microsecond-scale plasma generation; multiinstitutional collaboration; plasma liner experiment; plasma liner implosions; pulsed power stored energy; spherically imploding plasma liners; stagnation thermal energy; standoff methods; Fuels; Incineration; Laboratories; Mathematical model; Merging; Physics; Plasmas; Fusion reactors; plasmas;
fLanguage :
English
Journal_Title :
Plasma Science, IEEE Transactions on
Publisher :
ieee
ISSN :
0093-3813
Type :
jour
DOI :
10.1109/TPS.2012.2186829
Filename :
6168279
Link To Document :
بازگشت