DocumentCode :
1469318
Title :
Bayesian and regularization methods for hyperparameter estimation in image restoration
Author :
Molina, Rafeal ; Katsaggelos, Aggelos K. ; Mateos, Javier
Author_Institution :
Dept. de Ciencias de la Comput., Granada Univ., Spain
Volume :
8
Issue :
2
fYear :
1999
fDate :
2/1/1999 12:00:00 AM
Firstpage :
231
Lastpage :
246
Abstract :
In this paper, we propose the application of the hierarchical Bayesian paradigm to the image restoration problem. We derive expressions for the iterative evaluation of the two hyperparameters applying the evidence and maximum a posteriori (MAP) analysis within the hierarchical Bayesian paradigm. We show analytically that the analysis provided by the evidence approach is more realistic and appropriate than the MAP approach for the image restoration problem. We furthermore study the relationship between the evidence and an iterative approach resulting from the set theoretic regularization approach for estimating the two hyperparameters, or their ratio, defined as the regularization parameter. Finally the proposed algorithms are tested experimentally
Keywords :
Bayes methods; image restoration; iterative methods; maximum likelihood estimation; parameter estimation; MAP analysis; algorithms; hierarchical Bayesian paradigm; hyperparameter estimation; image restoration; iterative evaluation; maximum a posteriori analysis; regularization methods; regularization parameter; set theoretic regularization approach; Bayesian methods; Degradation; Image analysis; Image restoration; Iterative algorithms; Iterative methods; Lead; Least squares approximation; Parameter estimation; Testing;
fLanguage :
English
Journal_Title :
Image Processing, IEEE Transactions on
Publisher :
ieee
ISSN :
1057-7149
Type :
jour
DOI :
10.1109/83.743857
Filename :
743857
Link To Document :
بازگشت