DocumentCode :
1469623
Title :
MRF model based image segmentation using hierarchical distributed genetic algorithm
Author :
Kim, Hang Joon ; Kim, Eun Yi ; Kim, Jin Wook ; Park, Se Hyun
Author_Institution :
Dept. of Comput. Eng., Kyung Pook Nat. Univ., Taegu, South Korea
Volume :
34
Issue :
25
fYear :
1998
fDate :
12/10/1998 12:00:00 AM
Firstpage :
2394
Lastpage :
2395
Abstract :
An unsupervised method for segmenting noisy and blurred images is proposed. A Markov random field (MRF) model is used which is robust to degradation. Since this is computationally intensive, a hierarchical distributed genetic algorithm (HDGA) is used which is unsupervised and parallel. Experimental results show that the proposed method is effective at segmenting real images
Keywords :
Markov processes; genetic algorithms; image segmentation; parallel algorithms; MRF model; Markov random field; blurred images; hierarchical distributed genetic algorithm; image segmentation; noisy images; parallel algorithm;
fLanguage :
English
Journal_Title :
Electronics Letters
Publisher :
iet
ISSN :
0013-5194
Type :
jour
DOI :
10.1049/el:19981674
Filename :
744005
Link To Document :
بازگشت