DocumentCode :
1470682
Title :
Scalable Feature Extraction for Coarse-to-Fine JPEG 2000 Image Classification
Author :
Descampe, Antonin ; De Vleeschouwer, Christophe ; Vandergheynst, Pierre ; Macq, Benoit
Author_Institution :
Inst. of Inf. & Commun. Technol., Electron. & Ap plied Math. (ICTEAM), Univ. Catholique de Louvain, Louvain-la-Neuve, Belgium
Volume :
20
Issue :
9
fYear :
2011
Firstpage :
2636
Lastpage :
2649
Abstract :
In this paper, we address the issues of analyzing and classifying JPEG 2000 code-streams. An original representation, called integral volume, is first proposed to compute local image features progressively from the compressed code-stream, on any spatial image area, regardless of the code-blocks borders. Then, a JPEG 2000 classifier is presented that uses integral volumes to learn an ensemble of randomized trees. Several classification tasks are performed on various JPEG 2000 image databases and results are in the same range as the ones obtained in the literature with noncompressed versions of these databases. Finally, a cascade of such classifiers is considered, in order to specifically address the image retrieval issue, i.e., bi-class problems characterized by a highly skewed distribution. An efficient way to learn and optimize such cascade is proposed. We show that staying in a JPEG 2000 framework, initially seen as a constraint to avoid heavy decoding operations, is actually an advantage as it can benefit from the multiresolution and multilayer paradigms inherently present in this compression standard. In particular, unlike other existing cascaded retrieval systems, the features used along our cascade are increasingly discriminant and lead therefore to a better tradeoff of complexity versus performance.
Keywords :
data compression; feature extraction; image classification; image coding; image resolution; image retrieval; JPEG 2000 code-stream; JPEG 2000 image database; biclass problem; classification task; coarse-to-fine JPEG 2000 image classification; code-blocks border; compressed code-stream; compression standard; image retrieval; integral volume; local image feature; multilayer paradigm; multiresolution; scalable feature extraction; spatial image area; Decoding; Feature extraction; IP networks; Image resolution; Pixel; Scalability; Transform coding; Image coding; image retrieval; scalability; wavelet transforms;
fLanguage :
English
Journal_Title :
Image Processing, IEEE Transactions on
Publisher :
ieee
ISSN :
1057-7149
Type :
jour
DOI :
10.1109/TIP.2011.2126584
Filename :
5729823
Link To Document :
بازگشت