DocumentCode :
1474516
Title :
An Error Resilient Video Coding Scheme Using Embedded Wyner–Ziv Description With Decoder Side Non-Stationary Distortion Modeling
Author :
Zhang, Yongsheng ; Xiong, Hongkai ; He, Zhihai ; Yu, Songyu ; Chen, Chang Wen
Author_Institution :
Dept. of Electron. Eng., Shanghai Jiao Tong Univ., Shanghai, China
Volume :
21
Issue :
4
fYear :
2011
fDate :
4/1/2011 12:00:00 AM
Firstpage :
498
Lastpage :
512
Abstract :
In this paper, we propose a generic error resilient video coding (ERVC) scheme using embedded Wyner-Ziv (WZ) description. At the encoder side, a joint source-channel R-D optimized mode selection (JSC-RDO-MS) algorithm with WZ-coded anchor frames is statistically studied and developed. Given a stationary first-order Markov Gaussian source, the proposed mode optimization is justified by an analysis of the RD impact on the WZ bit-rate. JSC-RDO-MS involves in the estimation of expected rate and distortion of WZ coding with the unavailable side information, and the WZ bit-rate of each coding mode is determined based on the error correction capability of the specific WZ codec. At the decoder side, an online correlation noise model between the source and the side-information is proposed with a mixture of Laplacians whose parameters are attained to reflect the coherence of the motion field of successive frames and the energy of prediction residual. Each mixture component represents the statistical distribution of prediction residuals, and the mixing coefficients represent the amount of errors in motion compensation. The proposed scheme achieves the so-called classification gain by exploiting the spatially non-stationary characteristics of the motion field and texture. Extensive experimental results show that the proposed WZ-ERVC scheme achieves a better overall RD performance than existing ERVC schemes, and the proposed modeling algorithm also significantly outperforms the conventional Laplacian model by up to 2 dB.
Keywords :
Markov processes; combined source-channel coding; decoding; error correction codes; image classification; image texture; motion compensation; motion estimation; video coding; JSC-RDO-MS algorithm; Laplacian model; WZ-ERVC scheme; classification gain; decoder side nonstationary distortion modeling; distortion estimation; embedded Wyner-Ziv description; error correction capability; error resilient video coding scheme; first-order Markov Gaussian source; joint source-channel R-D optimized mode selection; mode optimization; motion compensation; online correlation noise model; prediction residuals; rate estimation; statistical distribution; texture nonstationary characteristics; Automatic voltage control; Correlation; Decoding; Encoding; Markov processes; Noise; Video coding; Correlation noise modeling; Wyner–Ziv coding; distributed video coding; error resilient video coding; non-stationary;
fLanguage :
English
Journal_Title :
Circuits and Systems for Video Technology, IEEE Transactions on
Publisher :
ieee
ISSN :
1051-8215
Type :
jour
DOI :
10.1109/TCSVT.2011.2129050
Filename :
5733406
Link To Document :
بازگشت