DocumentCode :
1474635
Title :
Asymptotic normality of the posterior in relative entropy
Author :
Clarke, Bertrand S.
Author_Institution :
Dept. of Statistics, British Columbia Univ., Vancouver, BC, Canada
Volume :
45
Issue :
1
fYear :
1999
fDate :
1/1/1999 12:00:00 AM
Firstpage :
165
Lastpage :
176
Abstract :
We show that the relative entropy between a posterior density formed from a smooth likelihood and prior and a limiting normal form tends to zero in the independent and identically distributed case. The mode of convergence is in probability and in mean. Applications to code lengths in stochastic complexity and to sample size selection are discussed
Keywords :
codes; computational complexity; convergence of numerical methods; entropy; probability; signal sampling; asymptotic normality; code lengths; convergence; i.i.d. case; limiting normal form; mean; posterior density; probability; relative entropy; sample size selection; smooth likelihood; stochastic complexity; Bayesian methods; Convergence; Density measurement; Entropy; Maximum likelihood estimation; Parameter estimation; Size measurement; Source coding; Statistics; Stochastic processes;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/18.746784
Filename :
746784
Link To Document :
بازگشت