DocumentCode :
1474757
Title :
On the crosscorrelation of sequences over GF(p) with short periods
Author :
Müller, Eva Nuria
Author_Institution :
Fakultat fur Math., Otto-von-Guericke-Univ., Magdeburg, Germany
Volume :
45
Issue :
1
fYear :
1999
fDate :
1/1/1999 12:00:00 AM
Firstpage :
289
Lastpage :
295
Abstract :
We investigate the crosscorrelation function Cd(t)=Σi=1 (pn-1) ζ(ai-t-adi), where ζ is a complex primitive pth root of unity, (ai)(i∈N0) is a maximal linear shift-register sequence of length pn-1, and p is an odd prime. For p=3, n odd, and d=pn+1/4+pn-1/2 we show that 2·√pn is an upper bound for the absolute value of 1+Cd(t). For any odd prime p and pk+1, where n/gcd/(n,k) is not divisible by 4 we determine the maximum absolute value of Cd(t) and the number of values of Cd(t)
Keywords :
Galois fields; correlation methods; m-sequences; Galois field; complex primitive root; crosscorrelation function; maximal linear shift-register sequence; sequence length; short periods; upper bound; Codes; Polynomials; Upper bound; Vectors;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/18.746820
Filename :
746820
Link To Document :
بازگشت