DocumentCode :
1474770
Title :
Best linear approximation and correlation immunity of functions over Zm*
Author :
Zhou, Jinjun ; Chen, Weihong ; Gao, Fengxiu
Author_Institution :
Dept. of Appl. Math., Zhengzhou Inf. Eng. Inst., China
Volume :
45
Issue :
1
fYear :
1999
fDate :
1/1/1999 12:00:00 AM
Firstpage :
303
Lastpage :
308
Abstract :
A fast algorithm for the computation of the ρ-representation of n-dimensional discrete Fourier transform (DFT) is given, where ρ is an mth primitive root of unity. Applying this algorithm to the standard ρ-representation of the DFT of ρf(x), the best linear approximation of a function f(x) can be easily obtained when the codomain of f(x) is Zm. A spectral characterization of correlation-immune functions over Z, is also presented in terms of the DFT of ζf(x)
Keywords :
approximation theory; correlation methods; discrete Fourier transforms; functional analysis; multivalued logic; spectral analysis; DFT; correlation-immune functions; discrete Fourier transform; fast algorithm; linear approximation; multivalued logical functions; primitive root; signal processing; spectral characterization; Approximation algorithms; Codes; Cryptography; Discrete Fourier transforms; Galois fields; Information security; Linear approximation; Mathematics; Signal processing algorithms; Vectors;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/18.746825
Filename :
746825
Link To Document :
بازگشت